Fine and distributed subcellular retinotopy of excitatory inputs to the dendritic tree of a collision-detecting neuron.

نویسندگان

  • Ying Zhu
  • Fabrizio Gabbiani
چکیده

Individual neurons in several sensory systems receive synaptic inputs organized according to subcellular topographic maps, yet the fine structure of this topographic organization and its relation to dendritic morphology have not been studied in detail. Subcellular topography is expected to play a role in dendritic integration, particularly when dendrites are extended and active. The lobula giant movement detector (LGMD) neuron in the locust visual system is known to receive topographic excitatory inputs on part of its dendritic tree. The LGMD responds preferentially to objects approaching on a collision course and is thought to implement several interesting dendritic computations. To study the fine retinotopic mapping of visual inputs onto the excitatory dendrites of the LGMD, we designed a custom microscope allowing visual stimulation at the native sampling resolution of the locust compound eye while simultaneously performing two-photon calcium imaging on excitatory dendrites. We show that the LGMD receives a distributed, fine retinotopic projection from the eye facets and that adjacent facets activate overlapping portions of the same dendritic branches. We also demonstrate that adjacent retinal inputs most likely make independent synapses on the excitatory dendrites of the LGMD. Finally, we show that the fine topographic mapping can be studied using dynamic visual stimuli. Our results reveal the detailed structure of the dendritic input originating from individual facets on the eye and their relation to that of adjacent facets. The mapping of visual space onto the LGMD's dendrites is expected to have implications for dendritic computation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Precise Subcellular Input Retinotopy and Its Computational Consequences in an Identified Visual Interneuron

The Lobula Giant Movement Detector (LGMD) is a higher-order visual interneuron of Orthopteran insects that responds preferentially to objects approaching on a collision course. It receives excitatory input from an entire visual hemifield that anatomical evidence suggests is retinotopic. We show that this excitatory projection activates calcium-permeable nicotinic acetylcholine receptors. In viv...

متن کامل

Synchronized Neural Input Shapes Stimulus Selectivity in a Collision-Detecting Neuron

How higher-order sensory neurons generate complex selectivity from their simpler inputs is a fundamental question in neuroscience. The lobula giant movement detector (LGMD) is such a visual neuron in the locust Schistocerca americana that responds selectively to objects approaching on a collision course or their two-dimensional projections, looming stimuli [1-4]. To study how this selectivity a...

متن کامل

The contribution of synaptic location to inhibitory gain control in pyramidal cells

THE ACTIVITY OF PYRAMIDAL CELLS IS CONTROLLED BY TWO OPPOSING FORCES: synaptic inhibition and synaptic excitation. Interestingly, these synaptic inputs are not distributed evenly across the dendritic trees of cortical pyramidal cells. Excitatory synapses are densely packed along only the more peripheral dendrites, but are absent from the proximal stems and the soma. In contrast, inhibitory syna...

متن کامل

Quantifying the Number of Discriminable Coincident Dendritic Input Patterns through Dendritic Tree Morphology

Current developments in neuronal physiology are unveiling novel roles for dendrites. Experiments have shown mechanisms of non-linear synaptic NMDA dependent activations, able to discriminate input patterns through the waveforms of the excitatory postsynaptic potentials. Contextually, the synaptic clustering of inputs is the principal cellular strategy to separate groups of common correlated inp...

متن کامل

Excitatory Synaptic Interaction on the Dendritic Tree

A neuron in the Central Nervous System receives thousands of synaptic inputs arriving both from close and long distance neurons. Synaptic activity modulates the electrical potential of the neuronal membrane producing an output which is regulated by a threshold mechanism. The crossing of the threshold produces a sequence of spikes which, very likely, is the neural representation of the stimulus....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 115 6  شماره 

صفحات  -

تاریخ انتشار 2016